
Software Engineering Methodology

Chapter 2.0
Lifecycle Model

Table of Contents

Chapter Page

2.0 Lifecycle Model . 2.0-1
2.1 Project Sizes . 2.1-1
2.2 Adapting the Lifecycle . 2.2-1
2.3 Development Methodologies . 2.3-1

DOE G 200.1-1 Lifecycle Model
5-21-97 Chapter 2.0

Date: March 1996 Lifecycle Model Page
Rev Date: 2.0-1

Chapter: 2.0
Lifecycle Model

Description: This chapter describes the lifecycle model used for the Departmental software
engineering methodology. This model partitions the software engineering
lifecycle into eight major stages, as shown in Exhibit 2.0-1, Software Lifecycle
Stages and Deliverables. Each stage is divided into activities and tasks, and has a
measurable end point (Stage Exit). The execution of all eight stages is based on
the premise that the quality and success of a software product depends on a
feasible concept, highly visible project planning, commitments to resources and
schedules, complete and accurate requirements, a sound design, consistent and
maintainable programming techniques, and a comprehensive testing program.
The lifecycle stages and activities are described in chapters 3.0 through 10.0.

Intermediate work products are produced during the performance of the activities
and tasks in each stage. These work products are inspected and can be used to
assess software integrity, quality, and project status. As a result, adequacy of
requirements, correctness of designs, and quality of software products become
known early in the effort.

At least one time during each stage, an In-Stage Assessment is performed. An In-
Stage assessment is an independent review of the work products and deliverables
developed or revised during each lifecycle stage. The assessment is typically
conducted by a Quality Assurance practitioner and the results are provided to the
project manager. In-Stage Assessments are recommended after the achievement
of all major project milestones and the completion of deliverable work products.

At the conclusion of each stage, a Stage Exit is initiated to review the work
products of that stage and to determine whether to proceed to the next stage,
continue work in the current stage, or abandon the project. The approval of the
system owner and other project stakeholders at the conclusion of each stage
enables both the system owner and the project manager to remain in control of the
project throughout its life, and prevents the project from proceeding beyond
authorized milestones.

The end products of the lifecycle are the software product, the data managed by
the software, associated technical documentation, and user training and support.
The end products and services are maintained throughout the remainder of the
lifecycle in accordance with documented configuration management procedures.

DOE G 200.1-1 Lifecycle Model
5-21-97 Chapter 2.0

Date: March 1996 Lifecycle Model Page
Rev Date: 2.0-2

Description,
continued: The lifecycle model provides a method for performing the individual activities

and tasks within an overall project framework. The stages and activities are
designed to follow each other in an integrated fashion. Project teams have the
flexibility to adapt the lifecycle model to accommodate a particular development
methodology (e.g., spiral development), software engineering technique (e.g.,
prototyping and rapid application development), or other project constraints.

The amount of project and system documentation required throughout the
lifecycle depends on the size and scope of the project. System documentation
needs to be at a level that allows for full system operability, usability, and
maintainability. Typically, projects that require at least one work-year of effort
should have a full complement of documentation. For projects that require less
than one work-year of effort, the project manager and system owner should
determine the documentation requirements. In addition, the project's security and
quality assurance criteria may require the performance of other activities and the
generation of additional documentation.

The requirements for documentation should not be interpreted as mandating
formal, standalone, printed documents in all cases. Progressive documents that
continuously revise and expand existing documentation, online documents, forms,
reports, electronic mail messages, and handwritten notes (e.g., informal
conference records) are some examples of alternative documentation formats.

The following sections provide additional information about the lifecycle model.

2.1 Project Sizes
2.2 Adapting the Lifecycle
2.3 Development Methodologies

DOE G 200.1-1 Lifecycle Model
5-21-97 Chapter 2.0

Date: March 1996 Lifecycle Model Page
Rev Date: 2.0-3

Exhibit 2.0-1. Software Lifecycle Stages and Deliverables

 Planning Feasibility Statement
 Project Plan
 Software Quality Assurance Plan

 Requirements Software Configuration Management Plan
 Definition Continuity of Operations Statement/Plan
 Software Requirements Specification
 Project Test Plan
 Acceptance Test Plan (draft)

 Functional Logical Model
 Design Data Dictionary
 Requirements Traceability Matrix
 Functional Design Document

 System Physical Model
 Design Integration Test Plan (draft)
 System Test Plan (draft)
 Conversion Plan
 System Design Document
 Program Specifications
 Programming Standards

 Programming Acquisition Plan
 Installation Plan (draft)
 Integration Test Plan (final)
 System Test Plan (final)
 Software Baseline
 Transition Plan
 Operating Documents (draft)
 Training Plan (draft)

 Software Integration Test Reports
 Integration System Test Report
 & Testing Operating Documents (final)
 Training Plan (final)
 Installation Plan (final)
 Acceptance Test Plan (final)
 Preacceptance Checklist

DOE G 200.1-1 Lifecycle Model
5-21-97 Chapter 2.0

Date: March 1996 Lifecycle Model Page
Rev Date: 2.0-4

 Installation User Training Materials
 & Acceptance Acceptance Test Report
 Acceptance Checklist
 Operational System

 Software Maintenance

DOE 200.1-1 Lifecycle Model
5-21-97 2.1 Project Sizes

Date: March 1996 Lifecycle Model Page
Rev Date: 2.1-1

Section: 2.1
Project Sizes

Description: The lifecycle model used in this software engineering methodology can be
applied to software projects of varying sizes. In this model, software projects are
divided into three sizes: large, medium, and small. Each project size uses the
same lifecycle stages. Medium and small projects may compress or combine
stages and required documentation in direct proportion to the size of the
development effort. The major differences between project sizes are determined
by the following items.

The estimated total labor hours (the level of effort) required to complete
the project.

The use of cutting edge or existing technology.

The type and extent of both user and system interface requirements.

The project's contribution to, and impact on, the activities carried out by
the system users and other Departmental organizations.

The requirements, constraints, and risks associated with the project also influence
the determination of project size. The project size and any plans for adapting the
lifecycle model are documented in the Project Plan, which is reviewed and
approved by the system and other project stakeholders.

The following subsections provide descriptions of the three project sizes used in
this lifecycle model. Exhibit 2.1-1, Software Project Sizes, shows the level of
effort and complexity measures used to define the three sizes.

Large Projects: Large software engineering projects are included in the system owner's
organizational long-range plans. Headquarters-wide and Departmentwide
projects are usually developed as large-sized projects and are likely to require a
major acquisition of hardware and software. Typically, the larger the size and
scope of the project, the greater the detail and coordination needed to manage the
project. As risk factors and levels of effort increase, the scope of project
management also increases and becomes a critical factor in the success of the
project.

DOE 200.1-1 Lifecycle Model
5-21-97 2.1 Project Sizes

Date: March 1996 Lifecycle Model Page
Rev Date: 2.1-2

Medium
Projects: Medium software engineering projects require less effort than large projects,

typically use existing hardware and software, and might not be captured during
the organizational long-range planning process. Medium size projects are
frequently developed to automate operations within a programmatic office or
among a limited number of sites, and may be used to interface with other
software products. Planning medium size projects within the context of the
system owner organization's overall mission, and building in compatibility to the
Departmental computing environment can improve the software product's ability
to interface with other users, organizations, and applications; and increase the
product's longevity.

Small Projects: Small software engineering projects require minimal effort and use existing
hardware and software. The operational details of a small project can easily be
managed by the project manager, so formal documentation requirements are
limited. A project is small when the software being developed will have limited
functionality and use, meets a one-time requirement, or is developed using
reusable code.

DOE 200.1-1 Lifecycle Model
5-21-97 2.1 Project Sizes

Date: March 1996 Lifecycle Model Page
Rev Date: 2.1-3

Exhibit 2.1-1. Software Project Sizes

Effort Required (in staff months)

Complexity 0-8 9-24 25-n
(and associated characteristics)

Low:
- Existing or known technology
- Simple interfaces Small Small Medium
- Requirements well known
- Skills are available

Medium:
- Some new technology
- Multiple interfaces Small Medium Large
- Requirements not well known
- Skills not readily available

High:
- New technology
- Numerous complex interfaces Medium Large Large
- Numerous resources required
- Skills must be acquired

Lifecycle ModelDOE G 200.1-1
2.2 Adapting the Lifecycle5-21-97

Date: March 1996 Lifecycle Model Page
Rev Date: 2.2-1

Section: 2.2
Adapting the Lifecycle

Description: The software engineering methodology implements well-defined processes in a
lifecycle model that can be adapted to meet the specific requirements or
constraints of any software project. This section provides guidelines for adapting
the lifecycle processes to fit the characteristics of the project. These guidelines
help ensure that there is a common basis across all software projects for planning,
implementing, tracking, and assuring the quality of the work products.

The lifecycle model has built-in flexibility. All of the stages and activities can be
adapted to any size and scope software engineering project. The lifecycle can be
successfully applied to software development projects, software maintenance or
enhancements, and customization of commercial software. The lifecycle is
appropriate for all types of administrative, business, manufacturing, laboratory,
scientific, and technical applications. For scientific and technical projects,
adaptations to the lifecycle may be dictated by the project stakeholders or the
requirements for reporting technical results in formal reports or journal articles.

Adaptations: The lifecycle can be compressed to satisfy the needs of a small project, expanded
to include additional activities or work products for a large or complex project, or
supplemented to accommodate security requirements. Any modifications to the
lifecycle should be consistent with the established activities, documentation, and
quality standards included in the methodology. Project teams are encouraged to
adapt the lifecycle as long as the fundamental software engineering objectives are
retained and quality is not compromised.

The following are some examples of lifecycle adaptations.

Change the order in which lifecycle stages are performed.
Schedule stages and activities in concurrent or sequential order.
Repeat, merge, or eliminate stages, activities, or work products.
Include additional activities, tasks, or work products in a stage.
Change the sequence or implementation of lifecycle activities.
Change the development schedule of the work products.
Combine or expand activities and the timing of their execution.

Lifecycle ModelDOE G 200.1-1
2.2 Adapting the Lifecycle5-21-97

Date: March 1996 Lifecycle Model Page
Rev Date: 2.2-2

Adaptations,
continued: The lifecycle forms the foundation for project planning, scheduling, risk

management, and estimation. When a lifecycle stage, activity, or work product is
adapted, the change must be identified, described, and justified in the Project
Plan. Exhibit 2.2-1, Adapting the Lifecycle, shows how stages can be combined
to accommodate different size projects and software engineering techniques.
Notes are provided throughout the lifecycle stage chapters to identify activities
that have built-in project adaptation strategies. Adaptations should not introduce
an unacceptable level of risk and require the approval of the system owner and
other project stakeholders.

When adapting the lifecycle model, care must be taken to avoid the following
pitfalls.

Incomplete and inadequate project planning.

Incomplete and inadequate definition of project objectives and software
requirements.

Lack of a development methodology that is supported by software
engineering preferred practices and tools.

Insufficient time allocated to complete design before coding is started.

Not defining and meeting criteria for completing one software lifecycle
stage before beginning the next.

Compressing or eliminating testing activities to maintain an unrealistic
schedule.

Sample
Statements: The following are sample statements that can be used in the Project Plan to

describe different types of lifecycle adaptations. The first example shows a
scenario where the Feasibility Study activity will not be conducted in the
Planning Stage.

A Feasibility Study will not be performed for this software project. The need for
the product has been documented in several organizational reports and was
included in the fiscal year long-range plans. The platform for the project is
currently used for all applications owned by this organization. There are no
known vendor packages that will satisfy the functional requirements described by
the system owner.

Sample

Lifecycle ModelDOE G 200.1-1
2.2 Adapting the Lifecycle5-21-97

Date: March 1996 Lifecycle Model Page
Rev Date: 2.2-3

Statements,
continued: The following is a sample statement that shows how work products from two

different stages can be combined into one deliverable.

The Functional Design and System Design documents will be combined into one
design document. A Stage Exit will be conducted when the design document is
completed. To reduce the risk associated with combining the two documents, the
project team will develop prototype screens and reports for review and approval
by the system owner/user(s) as the prototypes are developed.

The following is a sample that shows how the eight lifecycle stages can be
compressed into five stages for a small project.

This project will require 4 staff months of effort to enhance an existing
application. The eight stages in the lifecycle will be combined into five stages as
follows: (1) Planning, (2) Requirements and Design, (3) Programming and
Testing, (4) Installation and Acceptance, and (5) Maintenance.

The following deviations will occur for document deliverables:

A Feasibility Study and an Analysis of Benefits and Costs will not be
necessary due to the restricted software and hardware platform.

The Requirements Specification will be limited to the statement of
enhancement requirements.

The Functional Design and System Design documents will be combined
into one design document.

An amendment package will be developed for the existing Users Manual.

Date: March 1996 Lifecycle Model Page
Rev Date: 2.2-4

Exhibit 2.2-1. Adapting the Lifecycle

 PROJECT
 SIZE

 * * * * * * * *
 LARGE /))))))))3))))))))3))))))))3))))))))3))))))))3))))))))3))))))))1

Maintenance
*Planning *Req.Def. *Fun.Des. *Sys.Des. *Progrmg. *Testing *Install. * &

Ops.
 +)))))))))))))), Accpt.
 *ITERATIVE DEV. /)),(1)
 +))3))))))))))))))1)-
 .) *next function *
 .))))))))))))))-

 * * * * *
 MEDIUM /))))))))3)))))))))))))3))))))))))))))))3))))))0))))))1 Maintenance
 *Planning *Req./Fun.Des. *Sys.Des./Progrm. *Test. *Instl. * & Ops.

 +)))))))))))), Accpt.
 +) *RAPID PROTO. /)),(2)

 .))2))))))))))))-)-

 * * *
 SMALL /))))))))0)))))))))))3)))))))))))))0)))))))))1 Maintenance
 *Planning *Req./Desg. *Progr./Test. *Install. * & Ops.
 R R R RAccept. R

Date: March 1996 Lifecycle Model Page
Rev Date: 2.2-5

 LESS)))Q
MORE

 DEGREE OF PROJECT MANAGEMENT REQUIRED

Note: Iterative development and rapid prototyping are optional techniques that can be used on any size project.

 = Stage exit occurs at this point.

(1) Each iteration produces working function(s) from integrated program modules.
(2) May produce any or all of requirements, system architecture, system design.

DOE G 200.1-1 Lifecycle Model
5-21-97 2.3 Development Methodologies

Date: March 1996 Lifecycle Model Page
Rev Date: 2.3-1

Section: 2.3
Development Methodologies

Description: This section describes some examples of development methodologies and
techniques that can be used with the Departmental software engineering
methodology. The examples include high-level instructions on how to adapt the
lifecycle stages to accommodate the development methodology. Exhibit 2.2-1,
Adapting the Lifecycle, shows how some development methodologies and
techniques can be used with the lifecycle model. The examples provided here are
not intended to be a comprehensive list of development methodologies and
techniques.

Segmented
Development: Segmented development is most often applied to large software engineering

projects where the project requirements can be divided into functional segments.
Each segment becomes a separate project and provides a useful subset of the total
capabilities of the full product. This segmentation serves two purposes: to break
a large development effort into manageable pieces for easier project management
and control; and to provide intermediate work products that form the building
blocks for the complete product.

The lifecycle processes and activities are applied to each segment. The overall
system and software objectives are defined, the system architecture is selected for
the overall project, and a Project Plan for development of the first segment is
written and approved by the system owner.

Segments are delivered to the system owner for evaluation or actual operation.
The results of the evaluation or operation are then used to refine the content of the
next segment. The next segment provides additional capabilities. This process is
repeated until the entire software product has been developed. If significant
problems are encountered with a segment, it may be necessary to reexamine and
revise the project objectives, modify the system architecture, update the overall
schedule, or change how the segments are divided.

Two major advantages of this approach are: the project manager can demonstrate
concrete evidence that the final product will work as specified; and users will
have access to, and use of, segments or functions prior to the delivery of the
entire software product.

Spiral

DOE G 200.1-1 Lifecycle Model
5-21-97 2.3 Development Methodologies

Date: March 1996 Lifecycle Model Page
Rev Date: 2.3-2

Development: Spiral development repeats the planning, requirements, and functional design
stages in a succession of cycles in which the project's objectives are clarified,
alternatives are defined, risks and constraints are identified, and a prototype is
constructed. The prototype is evaluated and the next cycle is planned.

The project objectives, alternatives, constraints, and risks are refined based on
this evaluation; then, an improved prototype is constructed. This process of
refinement and prototyping is repeated as many times as necessary to provide an
incrementally firm foundation on which to proceed with the project.

The lifecycle activities for the Planning, Requirements Definition, and Functional
Design Stages are repeated in each cycle. Once the design is firm, the lifecycle
stages for System Design, Programming, and Integration and Testing are
followed to produce the final software product.

Rapid
Prototyping: Rapid prototyping can be applied to any software development methodology

(e.g., segmented, spiral). Rapid prototyping is recommended for software
development that is based on a new technology or evolutionary requirements.

With the rapid prototyping technique, the most important and critical software
requirements are defined based on current knowledge and experience. A quick
design addressing those requirements is prepared, and a prototype is coded and
tested. The purpose of the prototype is to gain preliminary information about the
total requirements and confidence in the correctness of the design approach.
Characteristics needed in the final software product, such as efficiency,
maintainability, capacity, and adaptability might be ignored in the prototype.

The prototype is evaluated, preferably with extensive user participation, to refine
the initial requirements and design. After confidence in the requirements and
design approach is achieved, the final software is developed. The prototype
might be discarded, or a portion of it used to develop the final product.

The normal software engineering documentation requirements are usually
postponed with prototyping efforts. Typically, the project team, project
stakeholders, and system owner agree that the prototype will be replaced with the
actual software product and required support documentation after proof of the
model. The software that replaces the prototype should be developed using the
lifecycle processes and activities.

DOE G 200.1-1 Lifecycle Model
5-21-97 2.3 Development Methodologies

Date: March 1996 Lifecycle Model Page
Rev Date: 2.3-3

Iterative
Technique: The iterative technique is normally used to develop software products piece by

piece. Once the system architecture and functional or conceptual design are
defined and approved, system functionality can be divided into logically related
pieces called "drivers."

In iterative fashion, the project team performs system design, code, unit test, and
integration test activities for each driver, thereby delivering a working function of
the product. These working functions or pieces of the software product are
designed to fit together as they are developed. This technique allows functions to
be delivered incrementally for testing so that they can work in parallel with the
project team. It also enables other functional areas, such as documentation and
training, to begin performing their activities earlier and in a more parallel effort.
In addition, the iterative technique enables progress to be visible earlier, and
problems to be contained to a smaller scope.

With each iterative step of the development effort, the project team performs the
lifecycle processes and activities.

